If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+-8x+0=0
We add all the numbers together, and all the variables
x^2-8x=0
a = 1; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·1·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*1}=\frac{16}{2} =8 $
| 0x8(x+5)=5.2 | | 3/8m+4=28 | | 2(3-2x)=5(3-5x) | | 0.8(x+5)=5.2; | | 16090/6220=100/x | | 2^(1-x)=4^x | | 2n^2+9n+6=-3 | | -10=p+20 | | (q-9)*4=28 | | _10=p+20 | | n+4n+7+6n=11 | | 2p+4=12p | | 2=5-3y | | 2π=5-3y | | 2x^2-x-12=3 | | 2(3x-5)=4(2x+1) | | 10(s-7)=-154 | | 3x-2=7x+2=5 | | 2x^2=152 | | 3x+(3(x-1)+8)=x+19 | | 1.03^x=2 | | 5/2x+2x=18 | | x+3/2x+1=1 | | 8/3p=9 | | d^2-d+0=0 | | 7x+3=5+12 | | 7(-5-8x)=7x-7(4+8x) | | (x+1)/2=x-9 | | 25y^4-25y+10=0 | | -3/4+z=3/1/2 | | 7r+8r=0 | | -3/4+z=31/2 |